

NH Winter Climate and the AO

Forecasting the phase of the Arctic Oscillation is a factor for seasonal and longer-range forecasts.

Future climate change

- (1) Greenhouse gas forcing predicts more +AO conditions (e.g., Shindell et al. 1999, Hurrell et al. 2004; Miller et al. 2006, Scaife et al. 2012).
- (2) Will winters grow increasingly warmer? Or are there important feedbacks that could mitigate the positive trend, even intermittently?

Fall Eurasian Snow-Winter AO Hypothesis

October Siberian Snow Cover Expands SLP Increases Over Eurasia November Vertical Wave Propagation (i.e., Poleward Heat Fluxes) Enhanced December Stratospheric Polar Vortex Weakens or Breaks Down Stratospheric Circulation Ianuary **Anomalies Propagate Downward** into the Troposphere **Negative AO Conditions** February Prevail in the Troposphere Based on Cohen et al. (2007)

Evidenced in observations (e.g., Foster et al. 1983; Cohen and Entekhabu 1998; Saito et al. 2001; Cohen et al. 2007).

Model-produced snow cover does *not* demonstrate the response (e.g., *Hardiman et al.* 2008; *Allen and Zender* 2011), but a model with prescribed snow can (e.g., *Fletcher et al.* 2009; *Allen and Zender* 2010, 2011).

Objectives

- 1) Examine salient features for the mechanism in the models (e.g., snow cover, AO).
- 2) Evaluate the 'six-step process' in CMIP5 models and compare with observations.
- 3) Offer suggestions for why CMIP5 models do not agree with observations.

Data and Methodology

Observational Data

- •Monthly-mean ERA-Interim (1979-2011)
- •October Monthly-Mean Rutgers Eurasian Snow Cover Index (20-75°N, 0-170°E) (1979-2010)

CMIP5 Models

- •Monthly-mean piControl runs (15 models).
- •Selected based on availability of snow cover extent (snc) as downloadable variable.
- •Regridded to a 2.5° by 2.5° grid for intermodel comparisons.

Methodology

- Subdivide the piControl runs into 40-yr segments.
- Compute statistics on each segment separately.
- Present results by model (aggregate segment statistics) and as 'multi-model ensemble-mean.'
- Focus on NH extended cold season (ONDJFM).

The AO Pattern – Obs. vs. CMIP5

SLPa Regressed on -PC1 Of NDJFM SLPa

October Eurasian Snow Cover Statistics

October Mean Eurasian Snow Cover Extent

October Eurasian Snow Cover Statistics

Standard Deviation - October Eurasian Snow Cover

Eurasian Snow/SLP Relations

Atmospheric and Environmental Research ND SLPa Regressed Onto Oct. Eurasian Snow Cover Siberian Snow Cover Expands

2

SLP Increases Over Eurasia

Eurasian Snow/Surf. T Relations

ND Surface Ta Regressed Onto Oct. Eurasian Snow Cover

Steps 3 – 5 of the Hypothesis

Step 6 - Link to the DJF AO

Correlation of DJF AO Index w/ Oct Snow Index

(1) Variability in the Stratospheric Polar Vortex

- All models show lower variability than observed, some significantly lower (e.g., CSIRO).
- Ensemble-mean $\sigma_{U60} = 9.1$ m/s vs. Observed $\sigma_{U60} = 15$ m/s.

Standard Deviation of January [U]₁₀ at 60°N

(2) Downward Propagation of Stratospheric Anomalies

Ensemble-mean correlations show downward propagation to ~150 hPa but not to the surface.

r(Jan AO₁₀, Jan AO₁₀₀₀) ranges from -0.54 (INMCM4) to 0.20 in MIROC5.

Summary and Conclusions

- The six-step snow-AO hypothesis does not verify in the CMIP5 models, similar to the results from the CMIP3 models (*Hardiman et al.* 2008).
- Models continue to underperform on simulating fall snow cover extent, its variability, and the lagged atmospheric response to the snow.
- Analysis with the <u>historical</u> runs yields very similar conclusions.
- Irrespective of the snow relationship, the coupled climate models have issues with stratospheric vortex variability and 'downward propagation'.
 - This fact may give pause for wintertime climate model projections.

• Remaining Challenges/Future Work

- Snowfall/snow cover in the models. Precipitation-related? Land surface?
- Investigation of daily-mean output for downward propagation and wave dynamics propagation. This is relevant for both S/T studies as well as the snow-AO hypothesis.

3 Month Seasonal Forecast: U.S.

Thank you!

Jason C Furtado

Atmospheric and Environmental Research

E-mail: jfurtado@aer.com

This work is funded through NOAA Grant #NA10OAR4310163 and NSF Grant #BCS-1060323.

EXTRA SLIDES

October 24, 2012 Jason C. Furtado, Atmospheric and Environmental Research, Inc. (AER) NOAA 37TH Annual Climate Diagnostics Workshop

Prior Work

Observations a) Corr Oct Snow and 40-80N WAF 100 b) Corr Oct Snow and 60-90N GPH 1000 Dec Jan Day Cohen et al. (2007) Oct Nov

(1) Wave Forcing and Wave Propagation

Oct Zonal-Mean U (shading) and EP-Fluxes (arrows) Regressed onto the Oct Snow Index

(2) ND WAFz / JF SLPa Covariability

